首页 > 数学教案 > 高中数学 > 高一数学 >

七年级数学《有理数的乘方》教案(优秀15篇)

发布时间:2025-02-06

七年级数学《有理数的乘方》教案(精选15篇)

  作为一名人民教师,时常要开展教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。那要怎么写好教案呢?以下是小编整理的七年级数学《有理数的乘方》教案,欢迎大家借鉴与参考,希望对大家有所帮助。

  七年级数学《有理数的乘方》教案 1

  教学目标:

  1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。

  2.已知一个数,会求出它的正整数指数幂,渗透转化思想。

  3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。

  教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。

  教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。

  教学过程设计:

  (一)创设情境,导入新课

  提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?

  a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)

  (多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?

  1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.

  (二)合作交流,解读探究

  一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。

  求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的'n次方的结果时,也可读作a的n次幂。

  说明:(1)举例94来说明概念及读法。

  (2)一个数可以看作这个数本身的一次方,通常省略指数1不写。

  (3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。

  (4)乘方是一种运算,幂是乘方运算的结果。

  (三)应用迁移,巩固提高

  【例1】(1)(-4)3;(2)(-2)4;(3)-24.

  点拨:(1)计算时仍然是要先确定符号,再确定绝对值。

  (2)注意(-2)4与-24的区别。

  根据有理数的乘法法则得出有理数乘方的符号规律:

  负数的奇次幂是负数,负数的偶次幂是正数;

  正数的任何次幂都是正数,0的任何正整数次幂都是0.

  【例2】计算:

  (1)()3;     (2)(-)3;

  (3)(-)4; (4)-;

  (5)-22×(-3)2; (6)-22+(-3)2.

  (四)总结反思,拓展升华

  1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念。

  2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值。

  乘方的含义:(1)表示一种运算;(2)表示运算的结果。乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂。

  乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数。注意(-a)n与-an及()n与的区别和联系。

  (五)课堂跟踪反馈

  1.课本P42练习第1.2题。

  2.补充练习

  (1)在(-2)6中,指数为,底数为.?

  (2)在-26中,指数为,底数为.?

  (3)若a2=16,则a=    .?

  (4)平方等于本身的数是,立方等于本身的数是.?

  (5)下列说法中正确的是(  )

  A.平方得9的数是3

  B.平方得-9的数是-3

  C.一个数的平方只能是正数

  D.一个数的平方不能是负数

  (6)下列各组数中,不相等的是(  )

  A.(-3)2与-32 B.(-3)2与32

  C.(-2)3与-23 D.|2.3与|-23|

  (7)下列各式中计算不正确的是(  )

  A.(-1)20xx=-1

  B.-12002=1

  C.(-1)2n=1(n为正整数)

  D.(-1)2n+1=-1(n为正整数)

  (8)下列各数表示正数的是(  )

  A.|a+1| B.(a-1)2

  C.-(-a) D.||

  第2课时有理数的混合运算

  教学目标:

  1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序。

  2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律。

  教学重点:根据有理数的混合运算顺序,正确地进行有理数的混合运算。

  教学难点:有理数的混合运算。

  教学过程:

  一、有理数的混合运算顺序:

  1.先乘方,再乘除,最后加减。

  2.同级运算,从左到右进行。

  3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  【例1】计算:

  (1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);

  (2)1-×[3×(-)2-(-1)4]+÷(-)3.

  强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值。

  【例2】观察下面三行数:

  -2,4,-8,16,-32,64,…;①

  0,6,-6,18,-30,66,…;②

  -1,2,-4,8,-16,32,….③

  (1)第①行数按什么规律排列?

  (2)第②③行数与第①行数分别有什么关系?

  (3)取每行数的第10个数,计算这三个数的和。

  【例3】已知a=-,b=4,求()2--(ab)3+a3b的值。

  二、课堂练习

  1.计算:

  (1)|-|2+(-1)101-×(0.5-)÷;

  (2)1÷(1)×(-)÷(-12);

  (3)(-2)3+3×(-1)2-(-1)4;

  (4)[2-(-)3]-(-)+(-)×(-1)2;

  (5)5÷[-(2-2)]×6.

  2.若|x+2|+(y-3)2=0,求的值。

  3.已知A=a+a2+a3+…+a20xx,若a=1,则A等于多少?若a=-1,则A等于多少?

  三、课时小结

  1.注意有理数的混合运算顺序,要熟练进行有理数混合运算。

  七年级数学《有理数的乘方》教案 2

  一、教材分析:

  有理数的乘方是人教版七年级上册数学第一章的内容,在有了小学平方、立方基础之上,让学生通过探究学会乘方的意义和概念,熟练掌握有理数乘方的运算。有理数的乘方是一种特殊(积中的每一个因数都相同)的乘法。乘方贯穿初中数学的始终,对整个初中学习十分重要。通过这一节课的学习,培养学生的探索精神和观察、分析、归纳能力,并向学生渗透细心的重要性,使学生充分体会数学与现实生活的紧密联系,渗透数学的简洁美、神奇美。

  二、教学目标:

  (一)知识技能目标:

  1、正确理解乘方、幂、指数、底数等概念。

  2、感悟探索乘方的意义,会书写乘方算式,确定乘方的结果的符号。

  3、能快速、准确地进行有理数的乘方运算。

  (二)过程与方法:

  1、通过对乘方意义的探索,培养学生观察、比较、分析、归纳及概括能力。

  2、通过乘方运算的运用,培养学生的逻辑思维能力。

  (三)情感目标

  1、通过创设问题情境,激发学生学习数学的兴趣。通过乘方的故事,向学生展示数学与生活的紧密联系,数学源于生活,高于生活。

  2、向学生渗透探索、归纳的数学思想及数学的简洁美。

  3、培养学生协作精神,体验数学的探索与创造的快乐。

  三、教学重点

  正确理解乘方的意义,掌握乘方的运算方法。

  四、教学难点

  有理数乘方运算中符号的确定。

  五、教学方法:

  (1)创设问题情境,从生活实践入手,体现生活中的数学。

  (2)探索归纳,学生总结结论。

  (3)精讲多练,提高学生运用知识的能力。

  (4)运用闯关比赛形式,激发学生的学习兴趣,及时反馈提高。

  六、设计思想:通过人体细胞分裂创设问题情境,激发学生的学习兴趣,对新知识的探究,以生活中的'实例拉面和珠穆朗玛问题作为探究内容,使学生感悟生活中的数学,体现数学与现实生活的密切关系,自然地将学生的思维带入到整个教学过程中来。学生通过观察、探究、思考及与同学们交流合作,充分调动他们的学习积极性,参与到课堂教学中,进一步提高学生的逻辑推理能力与抽象概括能力。对新知的运用采用精讲多练的形式,把课堂交给学生,使他们在练习中发现问题,解决问题,从而实现知识掌握与运用形成能力。为了及时反馈信息,设计了课堂检测以闯关比赛形式,激发学生的参与意识,提高学生应用知识的能力,最后结合作业与数学故事《阿凡提》,向学生渗透数学文化,展示数学的神奇美。

  七、教学过程:

  (一)回顾思考

  回顾有理数的乘法法则,思考边长为5的正方形的面积是,棱长为5的立方体的体积是。

  设计题图:从学生已有基础入手,循序渐进,为探究新知做好铺垫。

  (二)情境引入

  1个细胞30分钟后分裂成2个,经过5小时,这种细胞由1个能分裂成多少个?

  要想解决此题,通过今天的学习就能做到,下面我们一起来学习有理数的乘方。

  板书课题:有理数的乘方

  设计意图:

  (1)以人体自身结构特点创设问题情境,设置疑问,激发学生的学习兴趣。

  (2)让学生产生惊奇,进而激发他们的求知欲,迫切欲揭开乘方运算的神秘面纱。

  (三)观察发现:启发引导,探索规律,得出概念。

  形式记作读作

  a a

  a×a

  a×a×a

  a×a×a×a

  a×a×…×a

  观察其中都含有哪些运算,这些式子的因数有什么特点?

  乘方的定义及有关概念:(新知归纳)

  1、乘方的定义:求n个相同因数的乘积的运算叫做乘方,乘方的结果叫做幂。

  2、乘方的表示法:

  读作:a的n次方或a的n次幂,也读作a的平方,也读作a的立方。

  (四)学以致用

  例1(1)(-3)×(-3)×(-3)×(-3)×(-3)可以记为____

  (2)在(-3)2中,底数是____,指数是____。

  (3)在-32中,底数是____,指数是____。

  议一议:-32与(-3)2有什么不同?结果相等吗?然后要求学生指出它们的区别。

  例2:计算

  分析:

  ①先引导学生分别指出它们的底数和指数;(找)

  ②按照乘方的定义将它化为熟悉的乘法运算;(化)

  ③运用乘法法则运算。(算)

  老师引导

  (1)小题,归纳步骤;学生尝试自己动手求解其他几个,最后师生共同评析完善。

  注意:

  (1)负数的乘方,在书写时一定要把整个负数(连同符号),用小括号括起来。这也是辨认底数的方法

  (2)分数的乘方,在书写的时一定要把整个分数用小括号括起来。

  (五)探索交流

  例3计算:

  (1)102,103,104,105,;

  (2)(-10)2,(-10)3,(-10)4(-10)5 。

  观察例3的结果,你能发现什么规律小组讨论

  1、正数的任何次幂都是正数;

  负数的奇次幂是负数,负数的偶次幂是正数

  2、10n等于1后面加n个0

  (六)小结练习

  乘方是求n个相同因数a的积的运算

  运算加减乘除乘方

  结果和差积商幂

  注意:

  (1)乘方与加、减、乘、除一样是一种运算

  (2)幂是乘方运算的结果,如和、差一样

  测评练习:

  1、写出下列各幂的底数与指数:

  (1)在74中,底数是___,指数____;

  (2)在a4中,底数是___,指数是____;

  (3)在(—6)5中,底数是___,指数是______;

  (4)在—25中,底数是____,指数是____;

  根据上面练习的表你觉得幂的符号与底数指数有关吗?你发现有什么变化规律吗?

  2、如果:x2=64,x是几?x3=64,x是几?

  3、(-1)n当n偶数时,结果为___

  当n奇数时,结果为___

  (—1)20xx-(-1)20xx=___

  注意:①对于乘方运算,先要学生确定幂的符号,再运算。

  ②对于1和—1的正整数次幂的运用加以强调。

  设计意图:

  (1)解题过程规范化,面向全体,照顾中下学生。

  (2)加深巩固概念,理解乘方的意义,熟练地进行乘方运算体会成功的感觉。

  考考你:一个数的平方为144,这个数是________

  一个数的平方是0,这个数是________

  一个数的平方为它本身,这个数是_______

  一个数的立方为它本身,这个数是________

  设计意图:

  (1)让学生通过比较加深理解,掌握乘方的意义。

  (2)让学生通过练习讨论并争执后理解乘方的各个概念,培养学生思维的严谨性。

  (3)通过闯关及时反馈,培养学生的竞争意识。

  (七)生活与数学

  1、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条。

  这样捏合到第_______次后可拉出256根面条。

  2、珠穆朗玛峰是世界的最高峰,它的海拔高度是8848米。把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰。这是真的吗?

  设计意图:选取生活实例,展示数学与现实生活的紧密联系。

  (八)乘方的故事

  1、巴衣老爷说:你能每天给我10元钱,一共给我20年吗?阿凡提说:尊敬的巴衣老爷,如果你能第一天给我1毛钱,第二天给我2毛钱,第三天给我4毛钱,以此类推,一直给20天,那我就答应你的要求!巴衣老爷眼珠子一转说:那好吧!亲爱的同学们:你知道阿凡提和巴衣老爷谁得到的钱多?

  2、有一个长工到一个财主家去做工,他和财主商定:“第一天给一分钱,第二天给两分钱,以后每天是前一天的平方。”财主答应了,到月底(30天)后,你猜一猜:财主会给长工多少钱?

  设计意图:及时巩固所学内容,通过数学故事,渗透数学文化,展示数学的神奇美。

  八、教学评价与反思

  本节课的教学设计是以人教版教材和新课程标准为依据,结合农村地区学生的实际情况,总体上采取教师创设问题学生合作交流与自主探索师生概括明晰的教学思路,整个教学过程环环相扣,层层深入,以问题为线索,启发学生思考和探索,这样的设计符合农村地区学生的认知规律,使学生易于接受。

  教学开始,提出问题,借助多媒体手段,引发学生积极思考,并归结出答案,由答案的表现形式再给学生提出问题,激发学生的求知欲望,在教师的启发诱导下自然过度到新知的学习,接着层层设问,引出乘方以及与乘方有关的概念,采用归纳类比的方法把新旧知识联系起来,既有利于复习巩固旧知识,又有利于新知的理解和掌握。

  成功之处:

  成功之一:用学生刚学过的生物学中人体细胞分裂创设了一个有趣的问题情境。一下就贴近了学生的心灵,激起了同学们强烈的的求知欲望。

  成功之二:以拉面的故事进一步让学生感受乘方意义的实例,在计算过程中培养了学生的合作意识、观察能力与分析数据能力,同时体会数学来源于生活,增强学生学好数学的决心。

  成功之三:学以致用环节。设计了一例一问题,一练习题组的形式,由简单基础题逐渐增难,循序渐进强化乘方意义的理解,书写、计算。成功实现的教学的基本目标。

  成功之四:恰当使用了多媒体教学设备。在课件制作上考虑到初一学生的年龄特点,有效地吸引学生的注意力。多媒体设备的使用不仅大大地提高了课堂容量,而且还可以展示学生的作品(课堂练习的解答),及时纠正学生书面表达的错误,规范解题格式,改掉小学生重结果轻过程,解题格式不规范,解题步骤混乱等不良现象。同时也营造了宽松、和谐的课堂氛围、让学生充分发表自己的看法,及时给学生鼓励与肯定,消除学生由小学升入初中因环境变化而引起的心里障碍,激活学生的思维,保持学生参与课堂学习的积极性。

  成功之五:随堂练习,巩固新知的环节循序渐进、层次分明。第一步:基础例题帮助学生正确寻找底数和指数,第二步提高练习,议一议,提高学生的能力,更好地理解乘方的意义,为下一节有理数的混合运算做好准备。第三步:测评练习极好的活跃了课堂氛围,增强的学生的竞争意识。

  成功之六:参透了传统的数学文化,将古今知识奇闻妙趣有机结合在一起,拓展了学生的视野,开阔了学生的思维,让学生领略了古今中外数学的神奇、简洁。

  不足之处

  不足之一:“探究新知:启发引导,探索规律,得出概念”环节中,没有安排学生动手亲自操作,对学生感受能力会不太深刻。

  不足之二:对学生情况不够熟悉。因为本节课是初一学生入学后一个月进行的,所以我对各个学生具体情况谅解不够深入,但是课后仔细想来,做好中小学数学教学的衔接工作不仅仅是教学内容设计上的衔接,而应该是多方位的衔接,其中就包括教师应尽快了解、熟悉学生,这样可以帮助消除学生刚升入初中的许多不适应。

  不足之三:回顾思考比较生硬,不够艺术化,教学尽量更加生动形象。

  七年级数学《有理数的乘方》教案 3

  【教学目标】

  (1)正确理解乘方、幂、指数、底数等概念。

  (2)会进行有理数乘方的运算。

  (3)培养探索精神,体验小组交流、合作学习的重要性。

  【教学方法】

  讲授法、讨论法。

  【教学重点】

  正确理解乘方的意义,掌握乘方运算法则。

  【教学难点】

  正确理解乘方、底数、指数的概念,并合理运算。

  【课前准备】

  教师准备教学用课件,学生预习。

  【教学过程】

  【新课讲授】

  边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a.

  a·a简记作a2,读作a的平方(或二次方).

  a·a·a简记 作a3,读作a的立方(或三次方).

  一般地,几个相同的因数a相乘,记作an.即a·a……a. 这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

  在an中,a叫底数,n 叫做指数,当an看作a的n次方的结果时,也可以读作a的n次 幂。

  例如,在94中,底数是9,指数 是4,94读作9的 4次方,或9的.4次幂,它表示4个9相乘,即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).

  思考:32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-2)4与-24呢?( )2与 呢?

  (-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-( 2×2×2),结果是-8.

  (-2)3与 -23的意义不相同,其结果一样。

  (-2)4的底数是-2,指数是4,读作-2的四次幂,表示

  (-2)×(-2)×(-2)×(-2),

  结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为

  -(2×2×2×2),其结果为-16.

  (-2)4与-24的意义不同,其结果也不同。

  ( )2的底数是 ,指数是2,读作 的二次幂,表示 × ,结果是 ; 表示32与5的商,即 ,结果是 .

  因此,当底数是负数或分数时,一定要用括号把底数括起来。

  一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写。

  因为an就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算。

  例1:计算:

  (1)(-4)3; (2)(-2)4; (3)(- )5;

  (4)33; (5)24; (6)(- )2.

  解:(1)(-4)3=(-4)×(-4)×(-4)=-64

  (2)(-2)4=(-2)×(-2)×(-2)×(-2)=16

  (3)(- )5=(- )×(- )×( - )×(- )×(- )=-

  七年级数学《有理数的乘方》教案 4

  教学目标

  1?理解有理数乘方的概念,掌握有理数乘方的运算;

  2?培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;

  3?渗透分类讨论思想?

  教学重点和难点

  重点:有理数乘方的运算?

  难点:有理数乘方运算的符号法则?

  课堂教学过程设计

  一、从学生原有认知结构提出问题

  在小学我们已经学习过aa,记作a2,读作a的平方(或a的二次方);aaa作a3,读作a的立方(或a的三次方);那么,aaaa可以记作什么?读作什么?aaaaa呢?

  在小学对于字母a我们只能取正数?进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明?

  二讲授新课

  1、求n个相同因数的积的运算叫做乘方?

  2、乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?

  一般地,在an中,a取任意有理数,n取正整数?

  应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。

  3、我们知道,乘方和加、减、乘、除一样,也是一种运算, 就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算?

  例1 计算:

  (1)2, 2, 2,24; (2)-2, 2, 3,(-2)4;

  (3)0,02,03,04?

  教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?

  引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?

  (1)模向观察

  正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?

  (2)纵向观察

  互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?

  (3)任何一个数的偶次幂都是什么数?

  任何一个数的偶次幂都是非负数?

  你能把上述的结论用数学符号语言表示吗?

  当a0时,an0(n是正整数);

  当a

  当a=0时,an=0(n是正整数)?

  (以上为有理数乘方运算的符号法则)

  a2n=(-a)2n(n是正整数);

  =-(-a)2n-1(n是正整数);

  a2n0(a是有理数,n是正整数)?

  例2 计算:

  (1)(-3)2,(-3)3,[-(-3)]5;

  (2)-32,-33,-(-3)5;

  (3) , ?

  让三个学生在黑板上计算?

  教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n的底数是-a,表示n个(-a)相乘,-an是an的相反数,这是(-a)n与-an的区别?

  教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了?

  课堂练习

  计算:

  (1) , , ,- , ;

  (2)(-1)20xx,322,-42(-4)2,-23(-2)3;

  (3)(-1)n-1?

  三、小结

  让学生回忆,做出小结:

  1?乘方的有关概念?2?乘方的符号法则?3?括号的作用?

  四、作业

  1、计算下列各式:

  (-3)2;(-2)3;(-4)4; ;-0.12;

  -(-3)3;3(-2)3;-6(-3)3;- (-4)2(-1)5?

  2、填表:

  3、a=-3,b=-5,c=4时,求下列各代数式的值:

  (1)(a+b)2; (2)a2-b2+c2; (3)(-a+b-c)2; (4)a2+2ab+b2?

  4、当a是负数时,判断下列各式是否成立?

  (1)a2=(-a)2; (2)a3=(-a)3; (3)a2= ; (4)a3= 。

  5、平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?

  6、若(a+1)2+|b-2|=0,求a20xxb3的值?

  课堂教学设计说明

  1、数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力?教学中,既要注重罗辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养?因此,根据教学内容和学生的认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学目标?

  2、数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的.精确化;第三是不断的逼近?在引入新时,要尽可能使学生的学习方式与数池家的研究方式类似,不断进行推广。a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a5,an是学生通过类推得到的?

  推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果?一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析?在an中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯?

  3、把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷?

  我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学?始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上?例如,通过实际计算,让学生自己休会到负数与分数的乘方要加括号?

  4、有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想?符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显?在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实?

  七年级数学《有理数的乘方》教案 5

  教学目标

  1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;

  2、知道底数、指数和幂的概念,会求有理数的正整数指数幂;

  3、会用科学记数法表示较大的数。

  教学重点

  1、有理数乘方的意义,求有理数的正整数指数幂;

  2、用科学记数法表示较大的数。

  教学难点

  有理数乘方结果(幂)的符号的确定。

  教学过程(教师)

  问题引入

  手工拉面是我国的传统面食。制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条。你能算出拉扣6次后共有多少根面条吗?

  乘方的.有关概念

  试一试:

  将一张报纸对折再对折……直到无法对折为止。你对折了多少次?请用算式表示你对折出来的报纸的层数。

  你还能举出类似的实例吗?

  有理数的乘方:同步练习

  1、对于式子(-3)6与-36,下列说法中,正确的是()

  A.它们的意义相同

  B.它们的结果相同

  C.它们的意义不同,结果相等

  D.它们的意义不同,结果也不相等

  2、下列叙述中:

  ①正数与它的绝对值互为相反数;

  ②非负数与它的绝对值的差为0;

  ③-1的立方与它的平方互为相反数;

  ④±1的倒数与它的平方相等。其中正确的个数有()

  A.1B.2C.3D.4

  七年级数学《有理数的乘方》教案 6

  教学目标

  1.利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)

  2.能将用科学记数法表示的数还原为原数.(重点)

  教学过程

  一、情境导入

  在悉尼举行的国际天文学联合会大会上,天文学家指出整个可见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有沙漠和海滩上的沙砾总和数量还要多.

  如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”.即约为“70000000000000000000000”颗.

  生活中,我们还常会遇到一些比较大的数.例如:

  1.据报载,20xx年我国将发展固定宽带接入新用户25000000户.

  2.全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽.

  3.拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克.

  像这些较大的数据,书写和阅读都有一定的难度,那么有没有这样一种表示方法,使得这些大数易写、易读、易于计算呢?

  二、合作探究

  探究点一:用科学记数法表示大数

  例1 我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为(  )

  A.167×103 B.16.7×104

  C.1.67×105 D.1.6710×106

  解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的关键是a,n的确定.167000=1.67×105,故选C.

  方法总结:科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

  例2 20xx年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元(  )

  A.9.34×102 B.0.934×103

  C.9.34×109 D.9.34×1010

  解析:934千万=9340000000=9.34×109.故选C.

  方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.

  探究点二:将用科学记数法表示的数转换为原数

  例3 已知下列用科学记数法表示的数,写出原来的数:

  (1)2.01×104;(2)6.070×105;(3)-3×103.

  解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可.

  解:(1)2.01×104=20100;

  (2)6.070×105=607000;

  (3)-3×103=-3000.

  方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.

  三、板书设计

  科学记数法:

  (1)把大于10的数表示成a×10n的`形式.

  (2)a的范围是1≤|a|<10,n是正整数.

  (3)n比原数的整数位数少1.

  教学反思

  本节课的特点是实际性强,和我们的日常生活联系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动.把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现.

  七年级数学《有理数的乘方》教案 7

  一、教学目标:

  1、认知目标

  正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。

  2、能力目标

  (1). 通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

  (2).使学生能够灵活地进行乘方运算。

  3、情感目标

  让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。

  二、教学重难点和关键:

  1、教学重点:正确理解乘方的意义,掌握乘方运算法则。

  2、教学难点:正确理解乘方、底数、指数的概念,并合理运算

  3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。

  三、教学方法

  考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。

  四、教学过程:

  1、创设情境,导入新课:

  这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。

  师:假如我现在抽取的是黑3 红3 黑4 红5 (幻灯片放映图片)如何算24?

  师:如果四张都是3呢?

  生答: -3 - 3×3×(-3)=

  师:现在老师把扑克牌拿掉一张红3,变成2个黑3 ,1个红3,大家有办法凑成24吗?

  生:思考几分钟后,有同学会想出 的答案

  师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)

  2、动手实践,共同探索乘方的`定义

  学生活动:请同学们拿出一张纸进行对折,再对折

  问题:(1)对折一次有几层? 2

  (2)对折二次有几层?

  (3)对折三次有几层?

  (4)对折四次有几层?

  师:一直对折下去,你会发现什么?

  生:每一次都是前面的2倍。

  师:请同学们猜想:对折20次有几层?怎样去列式?

  生:20个2相乘

  师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?

  简记: ……

  师:请同学们总结 对折n次有几层?可以简记为什么?

  2×2×2×2……×2

  SHAPE MERGEFORMAT

  n个2

  生:可简记为:

  师:猜想: 生:

  师:怎样读呢? 生:读作 的 次方

  老师总结:求 个相同因数的积的运算叫乘方;乘方运算的结果叫幂;(教师解说乘方的特殊性),在 中, 叫做底数(相同

  的因数), 叫做指数(相同因数的个数)。

  注意:乘方是一种运算,幂是乘方运算的结果。看作是的次方的结果时,也可读作的次幂。

  七年级数学《有理数的乘方》教案 8

  一、知识与技能

  (1)正确理解乘方、幂、指数、底数等概念。

  (2)会进行有理数乘方的运算。

  二、过程与方法

  通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想。

  三、情感态度与价值观

  培养探索精神,体验小组交流、合作学习的重要性。

  教学重、难点与关键

  1、重点:正确理解乘方的意义,掌握乘方运算法则。

  2、难点:正确理解乘方、底数、指数的概念,并合理运算。

  3、关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义。

  四、课堂引入

  1、几个不等于零的有理数相乘,积的符号是怎样确定的?

  几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。

  2、正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?

  五、新授

  边长为a的正方形的面积是aa,棱长为a的正方体的体积是aaa

  aa简记作a2,读作a的平方(或二次方)。

  aaa简记作a3,读作a的'立方(或三次方)。

  一般地,几个相同的因数a相乘,记作an.即aaa. 这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

  在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

  七年级数学《有理数的乘方》教案 9

  一、教学目标

  1.能理解并掌握有理数乘方的概念及意义,并能够正确进行有理数的乘方运算;

  2.通过观察、猜想、实践等数学活动,学生从中提高观察、类比、归纳和计算的能力。

  3.初步了解并体会转化的数学思想,逐步养成观察并发现规律的意识,在相互启发中体验合作学习,树立团队意识。

  二、教学重难点?

  有理数乘方的概念及意义,并正确进行有理数乘方的运算

  有理数乘方的概念及意义,并正确进行有理数乘方的运算

  三、教学策略

  本节课采用“启发引导、动手操作、分析讲解”的教学方式,亲身经历将实际问题抽象成数学模型并进行解释和运用的过程。在教学中注意发现问题、思考问题,寻找解决问题的方法。鼓励自主探索、逐步递进。积极参与讨论、合作学习,肯定成绩,激发学习兴趣和积极性

  四、教学过程

  教学进程教学内容学生活动设计意图引入新知问题一:

  把一张纸对折2次可裁成4张,即2×2张;对折3次可裁成8张,即2×2×2张。

  问:若对折10次可裁成几张?请用一个算式表示(不用算出结果),若对折100次,算式中有几个2相乘?

  显然,我们遇到了麻烦:如何书写100个、1000个相同因数相乘这样繁琐的式子呢?我们有必要创设一种新的表示方法来表示这样的运算。

  问题二:

  边长为a的正方形的面积为;

  棱长为a的正方体的体积为;

  学生动手操作,观察纸片,发现规律

  回忆小学已学知识并独立完成

  目的是培养学生的观察及归纳能力

  让学生亲历每个因数都相同时的乘法,书写起来的冗长,所以才需要创造一种简单的形式

  学习新知

  2个a相加可记为:a+a=2a

  3个a相加可记为:a+a+a=3a

  4个a相加可记为:a+a+a+a=4a

  n个a相加可记为:a+a+a+……+a=na

  类比可得:

  2个a相乘可记为:EMBED Unknown

  3个a相乘可记为:EMBED Unknown

  4个a相乘可记为什么呢?

  n个a相乘又记为什么呢?

  定义:一般地,我们把几个相同的.因数相乘的运算叫做乘方,乘方的结果叫做幂。如果有n个a相乘,可以写成,也就是EMBED Unknown

  其中叫做的n次方,也叫做的n次幂。叫做幂的底数可以取任何有理数;n叫做幂的指数,可以取任何正整数。

  特殊地,可以看作的一次幂,也就是说的指数是1.

  例如:读作-2的4次方或-2的4次幂;底数是-2,指数是4;表示4个-2相乘。 x看作幂的话,指数为1,底数为x.

  注意:当底数是负数或分数时,写成乘方形式时,必须加上括号。

  在学生理解有理数的乘方的意义的情况下,提供例1,指导学生完成,巩固概念的理解。

  例1.填空:

  (1) EMBED Unknown的底数是_____,指数是_____,它表示______;

  (2)的底数是______,指数是______,它表示______;

  (3)的底数是______,指数是______,它表示_______;

  例2.计算:

  教师引导

  学生口答

  学生边记录,边体会、理解

  正确表达有理数的乘方

  学生口答

  分析例题并板书,巩固幂的意义,写出体现幂的意义的全过程

  体会类比的数学思想

  七年级数学《有理数的乘方》教案 10

  学习目标

  知识与技能:使学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;正确进行有理数的乘方运算。

  过程与方法:经历探索乘方有关规律的过程,领会重要的数学建模思想,归纳思想,形成数感,符号感,发展抽象思维。

  情感态度价值观:

  鼓励猜想,倡导参与,学会倾听,建立自信心。

  学习重点:理解有理数乘方的意义和表示,会进行乘方运算。

  学习难点:幂,底数,指数的概念及其表示。处理好负数的乘方运算。用乘方解决有关实际学习重点问题。

  学习方法:

  探究归纳法

  过程设计:

  一自主研学

  1求n个()的运算叫做乘方,乘方的结果叫做()

  2在式子an(n为正整数)中,()叫底数,()叫指数,()叫幂。

  3负数的奇次幂是(),负数的偶次幂是(),正数的任何次幂(),0的任何次幂()。

  二合作互学

  知识点1:有关乘方的概念

  1(--3)4表示的意义是(),底数是(),指数是(),结果是()

  243的底数是()指数是(),表示的意义是(),结果等于()。

  知识点2乘方的运算

  3计算0.0012=();(--?)=()

  知识点3乘方的读法

  4(--2)5读作();---25读作()

  教学引入

  师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

  动画演示:

  场景一:正方形折叠演示

  师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

  [学生活动:各自测量。]

  鼓励学生将测量结果与邻近同学进行比较,找出共同点。

  讲授新课

  找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

  动画演示:

  场景二:正方形的性质

  师:这些性质里那些是矩形的性质?

  [学生活动:寻找矩形性质。]

  动画演示:

  场景三:矩形的性质

  师:同样在这些性质里寻找属于菱形的'性质。

  [学生活动;寻找菱形性质。]

  动画演示:

  场景四:菱形的性质

  师:这说明正方形具有矩形和菱形的全部性质。

  及时提出问题,引导学生进行思考。

  师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

  [学生活动:积极思考,有同学做跃跃欲试状。]

  师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

  学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

  “有一组邻边相等的矩形叫做正方形。”

  “有一个角是直角的菱形叫做正方形。”

  “有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

  [学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

  师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

  三自觉练学

  1(--3)3=(),--52=()

  2立方等于8的数是(),平方等于16的数是()

  3一个数的平方等于这个数本身,此数为(),一个数的立方等于这个数本身,此数为(),一个数的平方等于这个数的立方,此数为()。

  4(--3×5)2=();--(--2)4=()

  5(--1)2012=()

  6下列说法正确的是()

  A一个有理数的平方是非负数。B一个有理数的平方是正数。

  C一个有理数的平方大于这个数。D一个有理数的平方大于这个数的相反数。

  7把--(--?)(--?)(--?)(--?)写成乘方的形式是()

  8下列各对数中,值相等的是()

  A--32与--23B--23与(--2)3C--32与(--3)2D(--3)×2与--3×22

  9计算下列各题

  (1)(--?)3(2)--(--3)3(3)8×(--?)2

  (4)(--1)100×(--1)3(5)(--?)3×(--16)

  10阅读材料并解决问题

  你能比较两个数20112012和20122011的大小吗?

  为了解决这个问题,先把问题一般化,即比较nn+1和(n+1)n(n为大于1的正数)的大小。然后从分析n=1,n=2,,n=3~~这些简单情况入手发现规律,猜想一般结论。

  (1)计算比较

  12------2123-----3234------4345-------5456-----65

  (2)从上面各小题结果归纳,可以猜想什么结论?

  (3)根据归纳猜想的结论比较20112012和20122011的大小。

  七年级数学《有理数的乘方》教案 11

  【教材分析】《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。

  【教学目标】

  1.通过现实背景知道乘方运算与乘法运算的关系,理解有理数乘方的意义;知道底数、指数和幂的概念,会求有理数的正整数指数幂。

  2.培养学生观察、归纳能力;培养学生互相讨论、合作交流的能力;培养学生思考问题、解决问题的能力,切实提高学生的运算能力,培养学生勤思,认真和勇于探索的精神。

  3.感悟数学来源于生活,从而热爱生活;感悟数学符号的简洁美;积极参加数学学习活动,增强自主学习、合作学习意识与习惯。

  【教学重点】正确理解乘方的意义,能利用乘方的运算法则进行有理数 的乘方运算。

  【教学难点】

  1、建立底数、指数、和幂三个概念,并会进行有理数的乘方运算。

  2、有理数乘方运算的符号法则。

  【教具准备】教具准备:多媒体课件一套。

  学具准备:每个学生一张纸。

  【教法分析】基于本节课内容的特点和初一学生的年龄特征,我以“探究式”体验教学法为主进行教学。让学生在开放的情境中,在教师的引导启发下、同学的合作帮助下,通过探究发现,合作交流经历数学知识的形成和应用过程,加深对数学知识的理解。教师着眼于引导,学生着眼于探索,学生的探索发现贯穿始中,整个过程侧重于学生能力的提高、思维的训练,情感的成功体验。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教

  【学法分析】从自己已有的知识经验出发,自主参与整堂课的知识构建。在各个环节中进行观察、猜想、类比、分析、归纳,以动手实践、自主探索为主,学会合作交流,在师生互动、生生互动中充分调动学习的积极性和主动性,使自己由“学会”变“会学”和“乐学”。

  【学情分析】学生在小学六年级已学习了一个数的平方、立方运算。前面又学习了有理数的`乘除法运算,现在所学的有理数乘方,只是在小学所学正数范围扩充到有理数的范围。所以学生在教学活动中能大胆说出自己的体会。在动手,思考和合作交流的过程中,能主动探索,敢干实践,勇于发现。学生间的相互提问的互动的气氛较浓,有良好的学习氛围。

  【教学过程】

  一、创设情境

  问题1、请哪一位吃过兰州拉面的同学说一说拉面的制作过程?(结合学生口述过程)多媒体展示

  制作过程如下图(多媒体展示)

  教师设法引导学生将生活问题用数学的眼光来观察解决。

  引导:

  1、这样经过几扣可拉出64根?128根?

  2、能否用算式表示这种关系?

  这就是我们今天要研究的课题

  七年级数学《有理数的乘方》教案 12

  一、设计理念

  学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学,始终给学生创造自由发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,而是把重点放在教学情境的设计上。本节教学以学生为中心,从学生已有的生活经验出发,创设有助于学生自主学习的情境,让学生在老师的指导下主动学习。

  二、教学目标

  1.认知目标

  理解有理数乘方的意义,正确理解乘方、幂、指数、底数等概念,会进行有理数乘方的运算。

  2.能力目标

  (1)使学生能够灵活地进行乘方运算。

  (2)通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

  3.情感目标

  (1)通过对实例的讲解,让学生体会数学与生活的密切联系。

  (2)学会数学的转化思想,培养学生灵活处理现实问题的能力。

  三、教学重点、难点

  1.教学重点:正确理解乘方的意义,弄清底数、指数、幂等概念,掌握乘方运算法则。

  2.教学难点:正确理解各种概念并合理运算。

  四、教学方法

  引导探索,尝试指导,充分体现学生的主体地位。

  五、教学过程:

  创设情境——探求新知

  棋盘上的数学

  古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋。为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。大臣说:“陛下,就在这个棋盘上放一些米粒吧!第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒…,一直到第64格。”“你真傻!就要这么一点米粒?!”国王哈哈大笑,大臣说:“就怕您的国库里没有这么多米!”

  设计意图:

  通过创设故事和问题情境,吸引学生的注意力,唤起学生的好奇心,激发学生兴趣和主动学习的欲望,营造一个让学生主动思考、探索的氛围。

  猜想第64格的米粒是多少?

  第1格: 1

  第2格: 2

  第3格: 4=2×2=22

  第4格: 8=2 ×2 ×2=23

  第5格: 16= 2 ×2 ×2 ×2=24

  ……

  63个2

  第64格=2×2×······×2=263

  二、乘方的意义

  乘方:求n个相同因数a的积的`运算叫做乘方an读作a的n次幂(或a的n次方)。其中a是底数,n是指数。

  (设计意图):

  通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳和概括的能力,让学生在活动中感受数学符号的简捷美。

  七年级数学《有理数的乘方》教案 13

  教材分析:

  《有理数的乘方》是有理数乘法中相同因数相乘的简单表示方法,它作为基础知识,对学生以后学习科学记数法,进行幂的五种运算、整式加减等知识有很大帮助。

  学情分析:

  学生在小学阶段学过边长为 a 的正方形的面积 a 2 , 正方体的体积 a 3 ,同时,学生已经熟练掌握有理数乘法的运算,为学生学习有理数的乘方奠定了基础。

  教学目标:

  知识目标:

  理解有理数乘方的意义,能根据乘方的意义进行有理数的乘方运算。

  能力目标:

  通过学生自学、观察、思考,小组讨论、总结等活动,让学生体会从特殊到一般的归纳过程,培养学生的语言表达能力,学生的观察力、倾听及自学的能力,提高学生的逻辑思维能力。

  情感目标 :

  通过小组讨论,共同探索,共同分享成功的喜悦,感受团结协作的团队精神,激发学生学习数学的兴趣。

  教学重点:有理数乘方的意义。

  教学难点:负数的正整数幂的正负。

  教学方法:学生自学与四环节教学法相结合。

  教学过程设计

  (一)体验感受,激发兴趣

  做游戏:拿出课前让学生准备好的纸,让学生动手折纸。

  对折1次后,纸变成了几层?对折2次后变成几层?按照刚才折纸的规律,将一张足够长的纸连续20次,应该是多少层?

  第1次对折的层数是:2

  第2次对折的层数是:2×2

  第3次对折的层数是:2×2×2

  第20次对折的层数是:2×2×2×2……×2

  20个2

  20个2相乘的结果是多少?如果这张纸的厚度为0.1毫米,那么折纸的高度比我们学校的教学楼要高得多,你相信吗?学了今天的内容你们就会明白了。(板书课题——有理数的乘方)

  【设计意图】学生亲自动手,切实体验感受,激发其寻求规律的欲望,为新课学习作铺垫。

  (二)比较概括,提炼概念

  问题:

  1.边长为5的正方形的面积是多少?

  2.棱长为5的正方体的体积为多少? (课件出示)

  5×5=5=25 5×5×5=5 =125 23

  我们知道:5读作5的平方;5读作5的立方。5还读作5的.二次方或5 23 2的二次幂;5还读作5的三次方或5的三次幂。

  3

  同样的,20个2相乘记作2,读作2的二十次方或2的二十次幂。n个a20相乘记作a,读作a的n次方或a的n次幂。(学生回答)

  n像以上这种求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂。

  在a中a叫做底数,n叫做指数。可读作:a的n次方(或a的n次幂) n如:在9中,底数是( );指数是( );幂是( )读作( )。

  4【设计意图】通过复习旧知让学生自然归纳总结,从而得出乘方概念,并用图表表示出有理数的乘方各部分名称,形象直观,利于学生接受。

  (三)巩固概念,探究规律

  出示例1:(-2) 读作什么?并写出底数和指数。 6讨论后请一位学生上台板演。

  及时练习:

  (1)2读作__,其中底数是__,指数是__,表示为__,结果为__。 3(2)(-3)读作__,其中底数是__,指数是__,表示为__,结果为__。 4(3)(-)读作__,其中底数是__,指数是__,表示为__,结果为__。

  4

  出示例2:计算(1)(-2);

  (2)(-4);

  (3)(-2);

  (4)234(-1);

  (5)3;

  (6)2

  523

  学生分两组求出计算结果。

  引导探究:观察例2的结果,你能发现什么规律?用自己的语言描述你的发现。(先独立思考,再小组讨论)

  启发:底数、幂的符号和指数之间的关系。

  归纳:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。

  及时巩固练习(练习题见课件,共8题)

  【设计意图】通过学生自己做练习、探索规律,获取乘方运算的符号法则。放手让学生合作探究,把课堂还给学生,真正体现学生的主体地位。

  (四)加深认识,拓展思维

  小组讨论1:-3与(-3)有什么不同?结果相等吗? 22

  -3=-9;(-3)=9 22

  -3读作3 的相反数;(-3)读作-3的平方 222

  小组讨论2:观察7、8两题的结果,你能发现什么规律?

  1.负数的奇次幂是负数,负数的偶次幂是正数。

  2.10等于1后面加n个0。

  n

  【设计意图】通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳和概括的能力。

  (五)总结练习,感悟收获

  本节课你学到了什么?

  1.有理数的乘方的意义和相关概念。

  2乘方的运算法则。

  练习巩固新知

  【设计意图】让学生通过知识性内容的小结,把课堂教学传授的知识尽快转化为学生的素质,逐步提高学生的归纳能力和语言表达能力。

  (六)走进生活,激发兴趣

  1.把一张足够大的厚度为0.1毫米的纸,连续对折20次的厚度是多少?比我们的教学楼高吗?(对应导入)

  一张厚度是0.1毫米的纸,将它对折1 次后,厚度为0.1×2毫米;对折2次后,厚度为0.1×2=0.4毫米;对折20次后,厚度为0.1×2=0.1×1048576220毫米=104.8576米。比10个教学楼还要高。

  2. 棋盘上的数学。古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋。为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。大臣说:“陛下,就在这个棋盘上放一些米粒吧!第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒…,一直到第64格。”“你真傻!就要这么一点米粒?!”国王哈哈大笑,大臣说:“就怕您的国库里没有这么多米”你认为国王的国库里有这么多米吗?

  第64格上的米粒数为2 =9223372036854775808粒,是一个非常庞大63的数字。

  【设计意图】体会乘方结果的惊人,培养对数学探究的兴趣。

  (七)布置作业,课外拓展

  1、P1、2、3 80

  2、网上搜集有关乘方的数学故事,讲给同学们听。

  七年级数学《有理数的乘方》教案 14

  教学设计思想

  1.把课堂时间还给学生,把思维空间让给学生,教师创设数学情景让学生去自主的学,不把有理数的乘方的“计算方法”硬塞给学生。

  2.小组学习的方式培养学生勤于思考、乐于探究、敢于发表自己的见解的素质。

  3.把有理数的乘方与生活中的折纸、病毒细胞繁殖等实际问题联系起来,让学生感受数学来源于生活,数学又改变生活。

  教学目标

  知识与技能

  1.理解乘方的意义及有关概念(幂,底数,指数)。

  2.会进行简单的有理数乘方运算和解答简单的实际问题。

  过程与方法

  感受有理数的乘方与实际问题之间的联系,发展把数学知识与实际问题联系的能力。

  情感态度与价值观

  积极参加数学学习活动,增强自主学习、合作学习意识。

  教学重点

  有理数乘方的意义及运算。

  教学难点

  类比、探索、归纳、概括乘方的意义及规律。

  教学过程

  一、创设问题情景(不少于5分钟)

  问题1已知正方形的边长为a,则它的面积为。

  问题2已知正方体的各边长为a,则它的体积为。

  问题3你觉得生活中的把一张长方形的纸多次折叠所产生的小长方形的问题有规律吗?

  (本环节进行课堂提问,以鼓励为主,让学生敢于发表自己的见解)

  说明:这个环节让学生充分讨论,教师不必急于宣布答案。问题1和问题2是小学出现的a2与a3,在此基础上,学生对乘方有一个初步的感性认识,对乘方的引入有好处。另外,也可以对a赋几个值让学生计算,如边长为5,则面积为52(=5x5),体积为53(=5x5x5),等等。学生通过计算后,印象会进一步加深。问题3让学生实际操作,学生如果能类比、归纳、概括则为最好,如果不能,也有一个感性的认识。

  二、组织学生活动(不少于5分钟)

  A)组织学生对问题3进行实践、归纳、概括。

  I.对长方形纸对折1次、2次、3次、4次、5次等等,数一数,产生多少新的小长方形?

  II.每对折一次,小长方形的个数是对折前的'倍?

  对折次数一次二次三次四次五次n次

  小长方形个数2481632--

  个数可表示为21(2)22(2x2)23(2x2x2)24(2x2x2x2)25(2x2x2x2x2)an

  B)归纳乘方相关内容

  I.求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

  II.在an中,a叫作底数,n叫作指数,an读作a的n次方(a的n次幂)

  III.一个数可以看作这个数本身的一次方,例如2就是21,通常指数为1时可以省略不写。

  说明:本环节主要目的是让学生体会有理数乘方的意义,组织学生积极讨论,引导学生用自己的语言说出来。

  (本环节提问,鼓励学生发表自己的见解)

  三、运用数学知识解决问题

  1.运用乘方知识计算

  问题4计算

  (1)(-2)3(2)(-2)4(3)(-2)5(4)33(5)35

  解:(1)(-2)3=(-2)(-2)(-2)=-8

  (2)(-2)4=(-2)(-2)(-2)(-2)=16

  (3)(-2)5=(-2)(-2)(-2)(-2)(-2)=-32

  (4)33=3×3×3=27

  (5)35=3×3×3×3×3=243

  2.乘方运算的发展

  问题5请观察问题4的结果,回答问题:

  正数的任何次幂都是。

  负数的次幂是负数,负数的次幂是正数。

  3.乘方运算的简单实际运用

  问题6、某种病毒的繁殖速度非常快,每秒钟一个能繁殖为2个,假设现在有一个病毒,问10秒钟之后,有多少个病毒?

  解:210=1024

  答:10秒钟后有病毒1024个。

  四、练习与反馈

  1.(-4)5读作什么?其中底数是什么?指数是什么?(-4)5是正数还是负数?

  2.计算:

  (1)(-1)3(2)(-1)10

  (3)(0.1)3(4)(3/2)4

  (5)(-2)3x(-2)2(6)(-1/2)3x(-1/2)5

  (7)103(8)105

  五、小结与思考

  问题7、an的意义是什么?

  问题8、23与32有什么不同?

  问题9、负数的奇数次方与偶数次方的结果有什么不同?

  六、布置作业

  1.P48A组1,2,3

  2.在日常生活或古代传说中,还有哪些具体例子和有理数的乘方有关系?请举出一两个来,明天与同学分享。

  七、课后反思

  创设数学情景让学生去自主的学,可以让课堂教学“活”起来,学生的思维、学习能力等等比以前有提高。不足的是,由于把相当一部分课堂时间及空间都让给了学生,学生不能象以前一样,有很多的课堂时间去做练习题,有时还不一定能完成既定的课堂教学任务。

  七年级数学《有理数的乘方》教案 15

  教学目标:

  知识与能力:在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算;过程与方法:培养学生观察、分析、比较、归纳、概括的能力,渗透转化的思想;情感态度与价值观:培养学生勤思,认真,勇于探索的精神,并联系实际,加强理解,体会数学给我们的'生活带来的便利。

  教学重点:

  正确理解乘方的意义,掌握乘方的运算法则,进行有理数乘方运算。

  教学难点:

  正确理解乘方、底数、指数的概念并合理运算。

  教材分析:本节内容从小学所学过的一个数的平方与立方出发,介绍了乘方的概念,容有关联的是后面“科学计数法”、“有理数的混合运算”等部分内容。

  教学方法:

  教法:引导探索法、尝试指导法,充分体现学生主体地位;学法:学生观察思考,自主探索,合作交流。教学用具:电脑多媒体。课时安排:一课时

  板书设计:

  有理数的乘方

  底数a

  规律:正数的任何次幂都是正数负数的奇数次幂是负数负数的偶数次幂是正数

  教学反思:

  本节课的教学设计采用:“先学后教,当堂训练”的教学模式。整个教学过程从思考问题到问题解决,学生自主学习贯穿始终,中间围绕“自学—交流、更正—点拨、归纳”三个环节组织教学,注重培养学生观察、思考、交流归纳的能力。不足之处:在练习的讲评上,应给学生一个较为自由的空间,让学生相互启发,相互交流。

更多优质教案课件请关注微信公众号(本站右侧),找素材就来“鲸罗书馆”。上传您的稿件,人人都是创作者!

免责声明:本站文章均来自网络收集和网友投稿,如有冒犯您的权益,请联系我们及时删除处理!

复制全文

服务热线

870233576

工作时间:8:00 - 12:00

下午:13:30 - 17:30

添加微信号