服务热线
870233576
4.8 正弦函数、余弦函数的图像和性质(第三课时)
(一)教学具准备
直尺、投影仪.
(二)教学目标
1.理解 , 的周期性概念,会求周期.
2.初步掌握用定义证明 的周期为 的一般格式.
(三)教学过程
1.设置情境
自然界里存在着许多周而复始的现象,如地球的自转和公转,物理学中的单摆运动和弹簧振动、圆周运动等.数学里从正弦函数、余弦函数的定义可知,角 的终边每转一周又会与原来的位置重合,故 , 的值也具有周而复始的变化规律.为定量描述这种周而复始的变化规律,今天,我们来学习一个新的数学概念——函数的周期性(板书课题)
2.探索研究
(1)周期函数的定义
引导学生观察下列图表及正弦曲线
0
0
1
0
-1
0
1
0
-1
0
正弦函数值当自变量增加或减少一定的值时,函数值就重复出现.
联想诱导公式 ,若令 则 ,由这个例子,我们可以归纳出周期函数的定义:
对于函数 ,如果存在一个非零常数 ,使得当 取定义域内的每一个值时,都有 ,那么函数 叫做周期函数,非零常数 叫做这个函数的周期.
如 , ,…及 , …都是正弦函数的周期.
注意:周期函数定义中 有两点须重视,一是 是常数且不为零;二是等式必须对定义域中的每一个值时都成立.
师:请同学们思考下列问题:①对于函数 , 有 能否说 是正弦函数 的周期.
生:不能说 是正弦函数 的周期,这个等式虽成立,但不是对定义域的每一个值都使等式 成立,所以不符合周期函数的定义.
② 是周期函数吗?为什么
生:若是周期函数,则有非零常数 ,使 ,即 ,化简得 ,∴ (不非零),或 (不是常数),故满足非零常数 不存在,因而 不是周期函数.
思考题:若 为 的周期,则对于非零整数 , 也是 的周期.(课外思考)
(2)最小正周期的定义
师:我们知道…, , , , …都是正弦函数的周期,可以证明 ( 且 )是 的周期,其中 是 的最小正周期.
一般地,对于一个周期函数 ,如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做 的最小正周期.
今后若涉及的周期,如果不加特别说明,一般都是指函数的最小正周期.
依据定义, 和 的最小正周期为 .
(3)例题分析
【例1】求下列函数的周期:
(1) , ; (2) , ;
(3) , .
分析:由周期函数的定义,即找非零常数 ,使 .
解:(1)因为余弦函数的周期是 ,所以自变量 只要并且至少要增加到 ,余弦函数的值才能重复取得,函数 , 的值也才能重复取得,从而函数 , 的周期是 .
即 ,∴
(2)令 ,那么 必须并且只需 ,且函数 , 的周期是 ,就是说,变量 只要并且至少要增加到 ,函数 , 的值才能重复取得,而 所以自变量 只要并且至少要增加到 ,函数值就能重复取得,从而函数 , 的周期是 .
即
∴
(3)令 ,那么 必须并且只需 ,且函数 , 的周期是 ,由于 ,所以自变量 只要并且至少要增加到 ,函数值才能重复取得,即 是能使等式 成立的最小正数,从而函数 , 的周期是 .
而
∴
师:从上例可以看出,这些函数的周期仅与自变量 的系数有关,其规律如何?你能否求出函数 , 及函数 , (其中 , , 为常数,且 , )的周期?
生:
∴ .
同理可求得 的周期 .
【例2】求证:
(1) 的周期为 ;
(2) 的周期为 ;
(3) 的周期为 .
分析:依据周期函数定义 证明.
证明:(1)
∴ 的周期为 .
(2)
∴ 的周期为 .
(3)
∴ 的周期为 .
3.演练反馈(投影)
(1)函数 的最小正周期为( )
A. B. C. D.
(2) 的周期是_________
(3)求 的最小正周期.
参考答案:
(1)C;(2) ∴
(3)欲求 的周期,一般是把三角函数 化成易求周期的函数 或 的形式,然后用公式 求最小正周期,而化得的一般思路是“多个化一个,高次化一次”,将所给函数化成单角单函数.
由
4.总结提炼
(1)三角函数所特有的性质是周期性,周期与最小正周期是不同概念,研究三角函数的周期时,如未特别声明,一般是指它的最小正周期.
(2)设 , .若 为 的周期,则必有:① 为无限集,② ;③ 在 上恒成立.
(3)只有 或 型的三角函数周期才可用公式 ,不具有此形式,不能套用.如 ,就不能说它的周期为 .
(四)板书设计
课题
1.周期函数定义
两点注意:
思考问题①
②
2.最小正周期定义
例1
例2
的周期
的周期
练习反馈
总结提炼
思考题:设 是定义在 上的以2为周期的周期函数,且是偶函数,当 时, ,求 上的表达式
参考答案:
4.8 正弦函数、余弦函数的图像和性质(第一课时)
(一)教学具准备
直尺、圆规、投影仪.
(二)教学目标
1.了解作正、余弦函数图像的四种常见方法.
2.掌握五点作图法,并会用此方法作出 上的正弦曲线、余弦曲线.
3.会作正弦曲线的图像并由此获得余弦曲线图像.
(三)教学过程(可用课件辅助教学)
1.设置情境
引进弧度制以后, 就可以看做是定义域为 的实变量函数.作为函数,我们首先要关注其图像特征.本节课我们一起来学习作正、余弦函数图像的方法.
2.探索研究
(1)复习正弦线、余弦线的概念
前面我们已经学习过三角函数线的概念及作法,请同学们回忆一下什么叫正弦线?什么叫余弦线?(师画图1)
设任意角 的终边与单位圆相交于点 ,过点作 轴的垂线,垂足为 ,则有向线段 叫做角 的正弦线,有向线段 叫做角 的余弦线.
(2)在直角坐标系中如何作点
由单位圆中的正弦线知识,我们只要已知一个角 的大小,就能用几何方法作出对应的正弦值 的大小来,请同学们思考一下,如何用几何方法在直角坐标系中作出点 ?
教师引导学生用图2的方法画出点 .
我们能否借助上面作点 的方法在直角坐标系中作出正弦函数 , 的图像呢?
①用几何方法作 , 的图像
我们知道,作函数的图像的步骤是:列表、描点、连结;如果我们用列表法得出各点的坐标,就会因各点的纵坐标都是查三角函数表得到的数值不够精确,使得描点后画出的图像误差也大,为克服这一不足,我们用前面作点 的几何方法来描点,从而使图像的精确度有了提高.
(边画图边讲解),我们先作 在 上的图像,具体分为如下五个步骤:
a.作直角坐标系,并在直角坐标系中 轴左侧画单位圆.
b.把单位圆分成12等份(等份越多,画出的图像越精确).过单位圆上的各分点作 轴的垂线,可以得到对应于0, , , ,…, 角的正弦线.
c.找横坐标:把 轴上从0到 ( )这一段分成12等分.
d.找纵坐标:将正弦线对应平移,即可指出相应12个点.
e.连线:用平滑的曲线将12个点依次从左到右连接起来,即得 , 的图像.
②作正弦曲线 , 的图像.
图为终边相同的角的三角函数值相等,所以函数 , , 且 的图像与函数 , 的图像的形状完全一样,只是位置不同,于是我们只要将函数 , 的图像向左、右平移(每次 个单位长度),就可以得到正弦函数数 , 的图像,如图1.
正弦函数 , 的图像叫做正弦曲线.
③五点法作 , 的简图
师:在作正弦函数 , 的图像时,我们描述了12个点,但其中起关键作用的是函数 , 与 轴的交点及最高点和最低点这五个点,你能依次它们的坐标吗?
生:(0,0), , , ,
师:事实上,只要指出这五个点, , 的图像的形状就基本确定了,以后我们常先找出这五个关键点,然后用光滑的曲线将它们连结起来,就得到函数的简图,这种作图的方法称为“五点法”作图.
④用变换法作余弦函数 , 的图像
因为 ,所以 , 与 是同一个函数,即余弦函数的图像可以通过正弦曲线向左平移 个长度单位角得到,余弦函数的图像叫做余弦曲线,如图2,师:请同学们说出在函数 , 的图像上,起关键作用的五个点的坐标.
生:(0,1), , , ,
3.例题分析
【例1】画出下列函数的简图:
(1) , ;
(2) , .
解:(1)按五个关键点列表
0
0
1
0
-1
0
1
2
1
0
1
利用五点法作出简图3
师:请说出函数 与 的图像之间有何联系?
生:函数 , 的图像可由 , 的图像向上平移1个单位得到.
(2)按五个关键点列表
0
1
0
-1
0
1
-1
0
1
0
-1
利用五点法作出简图4
师: , 与 , 的图像有何联系?
生:它们的图像关于 轴对称.
练习:
(1)说出 , 的单调区间;
(2)说出 , 的奇偶性.
参考答案:(1)由 , 图像知、 , 为其单调递增区间, 为其单调递减区间
(2)由 , 图像知 是偶函数.
4.总结提炼
(1)本课介绍了四种作 , 图像的方法,其中五点作图法最常用,要牢记五个关键点的选取特点.
(2)用平移诱变法,由 这不是新问题,在函数一章学习平移作图时,就使用过,请同学们作比较.应该说明的是由 平移量是不惟一的,方向也可左可右.
5.演练反馈,(投影)
(1)在同一直角坐标系下,用五点法分别作出下列函数的图像
① , ② ,
(2)观察正弦曲线和余弦曲线,写出满足下列条件的 的区间.
① , ② , ③ , ④
(3)画出下列函数的简图
① , ② , ③ ,
参考答案:
(1)
(2)① , , ② 、 ,
③ ④
(3)
(五)板书设计
课题
1.正、余弦函数线
2.作点
3.作 , 的图像
4.五点法作正弦函数图像
5.变换法作 的图像
6.五点法作余弦函数图像
7.例题
(1)
(2)
演练反馈
总结提炼
返回
4.8 正弦函数、余弦函数的图像和性质(第二课时)
(一)教学具准备
直尺,投影仪.
(二)教学目标
1.掌握 , 的定义域、值域、最值、单调区间.
2.会求含有 、 的三角式的定义域.
(三)教学过程
1.设置情境
研究函数就是要讨论一些性质, , 是函数,我们当然也要探讨它的一些属性.本节课,我们就来研究正弦函数、余弦函数的最基本的两条性质.
2.探索研究
师:同学们回想一下,研究一个函数常要研究它的哪些性质?
生:定义域、值域,单调性、奇偶性、等等.
师:很好,今天我们就来探索 , 两条最基本的性质——定义域、值域.(板书课题正、余弦函数的定义域、值域.)
师:请同学看投影,大家仔细观察一下正弦、余弦曲线的图像.
师:请同学思考以下几个问题:
(1)正弦、余弦函数的定义域是什么?
(2)正弦、余弦函数的值域是什么?
(3)他们最值情况如何?
(4)他们的正负值区间如何分?
(5) 的解集如何?
师生一起归纳得出:
(1)正弦函数、余弦函数的定义域都是 .
(2)正弦函数、余弦函数的值域都是 即 , ,称为正弦函数、余弦函数的有界性.
(3)取最大值、最小值情况:
正弦函数 ,当 时,( )函数值 取最大值1,当 时,( )函数值 取最小值-1.
余弦函数 ,当 ,( )时,函数值 取最大值1,当 ,( )时,函数值 取最小值-1.
(4)正负值区间:
( )
(5)零点: ( )
( )
3.例题分析
【例1】求下列函数的定义域、值域:
(1) ; (2) ; (3) .
解:(1) ,
(2)由 ( )
又∵ ,∴
∴定义域为 ( ),值域为 .
(3)由 ( ),又由
∴
∴定义域为 ( ),值域为 .
指出:求值域应注意用到 或 有界性的条件.
【例2】求下列函数的最大值,并求出最大值时 的集合:
(1) , ; (2) , ;
(3) (4) .
解:(1)当 ,即 ( )时, 取得最大值
∴函数的最大值为2,取最大值时 的集合为 .
(2)当 时,即 ( )时, 取得最大值 .
∴函数的最大值为1,取最大值时 的集合为 .
(3)若 , ,此时函数为常数函数.
若 时, ∴ 时,即 ( )时,函数取最大值 ,
∴ 时函数的最大值为 ,取最大值时 的集合为 .
(4)若 ,则当 时,函数取得最大值 .
若 ,则 ,此时函数为常数函数.
若 ,当 时,函数取得最大值 .
∴当 时,函数取得最大值 ,取得最大值时 的集合为 ;当 时,函数取得最大值 ,取得最大值时 的集合为 ,当 时,函数无最大值.
指出:对于含参数的最大值或最小值问题,要对 或 的系数进行讨论.
思考:此例若改为求最小值,结果如何?
【例3】要使下列各式有意义应满足什么条件?
(1) ; (2) .
解:(1)由 ,
∴当 时,式子有意义.
(2)由 ,即
∴当 时,式子有意义.
4.演练反馈(投影)
(1)函数 , 的简图是( )
(2)函数 的最大值和最小值分别为( )
A.2,-2 B.4,0 C.2,0 D.4,-4
(3)函数 的最小值是( )
A. B.-2 C. D.
(4)如果 与 同时有意义,则 的取值范围应为( )
A. B. C. D. 或
(5) 与 都是增函数的区间是( )
A. , B. ,
C. , D. ,
(6)函数 的定义域________,值域________, 时 的集合为_________.
参考答案:1.B 2.B 3.A 4.C 5.D
6. ; ;
5.总结提炼
(1) , 的定义域均为 .
(2) 、 的值域都是
(3)有界性:
(4)最大值或最小值都存在,且取得极值的 集合为无限集.
(5)正负敬意及零点,从图上一目了然.
(6)单调区间也可以从图上看出.
(五)板书设计
1.定义域
2.值域
3.最值
4.正负区间
5.零点
例1
例2
例3
课堂练习
课后思考题:求函数 的最大值和最小值及取最值时的 集合
提示:
更多优质教案课件请关注微信公众号(本站右侧),找素材就来“鲸罗书馆”。上传您的稿件,人人都是创作者!
免责声明:本站文章均来自网络收集和网友投稿,如有冒犯您的权益,请联系我们及时删除处理!